domingo, 8 de febrero de 2009

TABLAS








CONDUCTANCIA

Se denomina Conductancia eléctrica (G) de un conductor a la inversa de la oposición que dicho conductor presenta al movimiento de los electrones en su seno, esto es, a la inversa de su resistencia eléctrica (R).
G = Conductancia en Siemens.
R = Resistencia en Ohmios.
La unidad de medida de la conductancia en el Sistema internacional de unidades es el Siemens.
La conductancia está directamente relacionada con la facilidad que ofrece un material cualquiera al paso de la corriente eléctrica. La conductancia es lo opuesto a la resistencia. A mayor conductancia la resistencia disminuye y viceversa, a mayor resistencia, menos conductancia, por lo que ambas son inversamente proporcionales.Existen algunos materiales que conducen mejor la corriente que otros. Los mejores conductores son, sin duda alguna, los metales, principalmente el oro (Au) y la plata (Ag), pero por su alto costo en el mercado se prefiere utilizar, en primer lugar, el cobre (Cu) y, en segundo lugar, el aluminio (Al), por ser ambos metales buenos conductores de la electricidad y tener un costo mucho menor que el del oro y la plata.Otros tipos de materiales, como el alambre nicromo (Ni-Cr, aleación de níquel y cromo), el constantán, la manganina, el carbón, etc. no son buenos conductores y ofrecen mayor resistencia al paso de la corriente eléctrica, por lo que son utilizados como tales, es decir, como “resistencias eléctricas” para producir calor fundamentalmente, o para controlar el paso de la corriente en los circuitos electrónicos.
Además de los conductores y las resistencias, existen otros materiales denominados semiconductores como, por ejemplo, el germanio y el silicio, que permiten el paso de la corriente en un sentido, pero lo impiden en el sentido opuesto. El silicio, sobre todo, se emplea desde hace años para fabricar diodos, transistores, circuitos integrados y microprocesadores, aprovechando sus propiedades semiconductoras.
Por otro lado podemos encontrar también materiales no conductores, que ofrecen total resistencia al flujo de la corriente eléctrica. En ese caso se encuentran el vidrio, el plástico, el PVC, la porcelana, la goma, etc., que se emplean como materiales aislantes en los circuitos eléctricos.
Si hacemos una comparación entre diferentes materiales como el cobre, nicromo, silicio y la porcelana y buscamos en una tabla sus coeficientes de resistividad a 20ºC, veremos que el cobre tiene 0,0172, el nicromo 1,5 y el silicio 1 000 · mm2 / m, mientras el coeficiente de resistividad de la porcelana es infinito.

RESISTENCIA

Se denomina resistencia eléctrica, R, de una sustancia, a la oposición que encuentra la corriente eléctrica para circular a través de dicha sustancia. Su valor viene dado en ohmios, se designa con la letra griega omega mayúscula, Ω, y se mide con el ohmímetro.
Esta definición es válida para la corriente continua y para la corriente alterna cuando se trate de elementos resistivos puros, esto es, sin componente inductiva ni capacitiva. De existir estos componentes reactivos, la oposición presentada a la circulación de corriente recibe el nombre de impedancia.
Según sea la magnitud de esta oposición, las sustancias se clasifican en conductoras, aislantes y semiconductoras. Existen además ciertos materiales en los que, en determinadas condiciones de temperatura, aparece un fenómeno denominado superconductividad, en el que el valor de la resistencia es prácticamente nulo.
Comportamientos ideal y real
Una resistencia ideal es un elemento pasivo que disipa energía en forma de calor según la ley de Joule. También establece una relación de proporcionalidad entre la intensidad de corriente que la atraviesa y la tensión medible entre sus extremos, relación conocida como ley de Ohm.
Una resistencia real en corriente continua (CC) se comporta prácticamente de la misma forma que si fuera ideal, esto es, transformando la energía eléctrica en calor.
Comportamiento en corriente alterna.
Como se ha comentado anteriormente, una resistencia real muestra un comportamiento diferente del que se observaría en una resistencia ideal si la intensidad que la atraviesa no es continua. En el caso de que la señal aplicada sea senoidal, corriente alterna (CA), a bajas frecuencias se observa que una resistencia real se comportará de forma muy similar a como lo haría en CC, siendo despreciables las diferencias. En altas frecuencias el comportamiento es diferente, aumentando en la medida en la que aumenta la frecuencia aplicada, lo que se explica fundamentalmente por los efectos inductivos que producen los materiales que conforman la resistencia real. Por ejemplo, en una resistencia de carbón los efectos inductivos solo provienen de los propios terminales de conexión del dispositivo mientras que en una resistencia de tipo bobinado estos efectos se incrementan por el devanado de hilo resistivo alrededor del soporte cerámico, además de aparecer una cierta componente capacitiva si la frecuencia es especialmente elevada. En estos casos, para analizar los circuitos, la resistencia real se sustituye por una asociación serie formada por una resistencia ideal y por una bobina también ideal, aunque a veces también se les puede añadir un pequeño condensador ideal en paralelo con dicha asociación serie. En los conductores, además, aparecen otros efectos entre los que cabe destacar el efecto pelicular

RESISTIVIDAD


Se le llama resistividad al grado de dificultad que encuentran los electrones en sus desplazamientos. Se designa por la letra griega rho minúscula (ρ) y se mide en ohms por metro (Ω·m, a veces también en Ω·mm²/m).
Todas las sustancias se oponen en mayor o menor grado al paso de la corriente eléctrica, esta oposición es a la que llamamos resistencia eléctrica. A los materiales buenos conductores de la electricidad tienen una resistencia eléctrica muy baja, los aisladores tienen una resistencia muy alta. Su valor describe el comportamiento de un material frente al paso de corriente eléctrica, por lo que da una idea de lo buen o mal conductor que es. Un valor alto de resistividad indica que el material es mal conductor mientras que uno bajo indicará que es un buen conductor.
Generalmente la resistividad de los metales aumenta con la temperatura, mientras que la resistividad de los semiconductores disminuye ante el aumento de la temperatura.

CONDUCTIVIDAD

La conductividad, por su parte, es lo opuesto a la resistividad. La resistividad o resistencia específica de un material se representa con la letra griega “” (rho)* . Por tanto, su inverso se puede representar matemáticamente por medio de la fórmula siguiente, en la que la letra griega “” (sigma) representa la conductividad:




Mientras mayor sea la conductividad de un material o elemento cualquiera, más fácilmente fluirá la corriente eléctrica por el circuito. La unidad de medida de la conductividad es el siemens/m (S/m).* El valor de la resistencia específica "" (rho) de un material o conductor eléctrico cualquiera se obtiene multiplicando los ohm ()de resistencia que posee un metro de ese material, por el área de su sección transveral medida en mm2. A continuación ese resultado se divide por la longitud que tiene dicho material o conductor eléctrico. Por tanto, la fórmula para realizar esa operación matemática sera:


sábado, 7 de febrero de 2009

SEMICONDUCTORES


SEMICONDUCTORES
Para presentar los semiconductores, es útil empezar revisando los conductores. Hay dos perspectivas desde las que se puede explorar la conducción: 1) podemos centrarnos en los dispositivos y, por tanto, interesarnos en características del volumen de información (voltaje, resistencia, etc.), o 2) Podemos centrarnos en los materiales, tomando así un punto de vista microscópico, en términos de campo eléctrico, densidad de corriente, etc.
Un semiconductor es un componente que no es directamente un conductor de corriente, pero tampoco es un aislante. En un conductor la corriente es debida al movimiento de las cargas negativas (electrones). En los semiconductores se producen corrientes producidas por el movimiento de electrones como de las cargas positivas (huecos). Los semiconductores son aquellos elementos pertenecientes al grupo IV de la Tabla Periódica (Silicio, Germanio, etc). Generalmente a estos se le introducen átomos de otros elementos, denominados impurezas, de forma que la corriente se deba primordialmente a los electrones o a los huecos, dependiendo de la impureza introducida. Otra característica que los diferencia se refiere a su resistividad, estando ésta comprendida entre la de los metales y la de los aislantes.

Todos los circuitos integrados se fabrican con semiconductores, sustancias cuya capacidad de conducir la electricidad es intermedia entre la de un conductor y la de un no conductor o aislante. El silicio es el material semiconductor más habitual. Como la conductividad eléctrica de un semiconductor puede variar según la tensión aplicada al mismo, los transistores fabricados con semiconductores actúan como minúsculos conmutadores que abren y cierran el paso de corriente en sólo unos pocos nanosegundos (milmillonésimas de segundo). Esto permite que un ordenador pueda realizar millones de instrucciones sencillas cada segundo y ejecutar rápidamente tareas complejas.
El bloque básico de la mayoría de los dispositivos semiconductores es el diodo, una unión de materiales de tipo negativo (tipo n) y positivo (tipo p). Los términos "tipo n" y "tipo p" se refieren a materiales semiconductores que han sido dopados, es decir, cuyas propiedades eléctricas han sido alteradas mediante la adición controlada de pequeñísimas concentraciones de impurezas como boro o fósforo. En un diodo, la corriente eléctrica sólo fluye en un sentido a través de la unión: desde el material de tipo p hasta el material de tipo n, y sólo cuando el material de tipo p está a una tensión superior que el de tipo n. La tensión que debe aplicarse al diodo para crear esa condición se denomina tensión de polarización directa. La tensión opuesta que hace que no pase corriente se denomina tensión de polarización inversa. Un circuito integrado contiene millones de uniones p-n, cada una de las cuales cumple una finalidad específica dentro de los millones de elementos electrónicos de circuito. La colocación y polarización correctas de las regiones de tipo p y tipo n hacen que la corriente eléctrica fluya por los trayectos adecuados y garantizan el buen funcionamiento de todo el chip.

AISLANTES


AISLANTES
Algunos aislantes son el Plástico, la madera, Cerámicos
El aislamiento eléctrico se produce cuando se cubre un elemento de una instalación eléctrica con un material que no es conductor de la electricidad, es decir, que resiste el paso de la corriente a través del elemento que recubre y lo mantiene en su trayectoria a lo largo del conductor, dicho material se denomina aislante eléctrico.
Se denomina aislante eléctrico al material con escasa conductividad eléctrica. Aunque no existen cuerpos absolutamente aislantes o conductores, sino mejores o peores conductores, son materiales muy utilizados para evitar cortocircuitos, forrando con ellos los conductores eléctricos, para mantener alejadas del usuario determinadas partes de los sistemas eléctricos que, de tocarse accidentalmente cuando se encuentran en tensión, pueden producir una descarga, para confeccionar aisladores (elementos utilizados en las redes de distribución eléctrica para fijar los conductores a sus soportes sin que haya contacto eléctrico) Los materiales utilizados más frecuentemente son los plásticos y las cerámicas.
El comportamiento de los aislantes se debe a la barrera de potencial que se establece entre las bandas de valencia y conducción que dificulta la existencia de electrones libres capaces de conducir la electricidad a través del material (para más detalles ver semiconductor).
Un material aislante de la electricidad tiene una resistencia teóricamente infinita. Algunos materiales, como el aire o el agua, son aislantes bajo ciertas condiciones pero no para otras. El aire, por ejemplo, aislante a temperatura ambiente y bajo condiciones de frecuencia de la señal y potencia relativamente bajas, puede convertirse en conductor.
En los circuitos eléctricos normales suelen usarse plásticos como revestimiento aislante para los cables. Los cables muy finos, como los empleados en las bobinas (por ejemplo, en un transformador), pueden aislarse con una capa delgada de barniz. El aislamiento interno de los equipos eléctricos puede efectuarse con mica o mediante fibras de vidrio con un aglutinador plástico. En los equipos electrónicos y transformadores se emplea en ocasiones un papel especial para aplicaciones eléctricas. Las líneas de alta tensión se aíslan con vidrio, porcelana u otro material cerámico
¿Cuál es la diferencia existente entre conductor, semiconductor y aislante?
· Es sencillo, los conductores son todos aquellos que poseen menos de 4 electrones en la capa de valencia.
· El semiconductor es aquel que posee 4 electrones en la capa de valencia.
· El aislante es el que posee más de 4 electrones en la capa de valencia.
Antes que nada tenemos que definir claramente lo que es un aislante y no son más que cualquier material que conduce mal el calor o la electricidad y que se emplea para suprimir su flujo, o sea, que las cargas se mueven con mucha dificultad. Son aquellos materiales en los cuales los electrones no se desprenden fácilmente, aún aplicando una diferencia de potencial, es decir, una presión eléctrica elevada.
Las dos clases de aislantes más importantes que existen son:
· Aislantes Eléctricos.
· Aislantes Térmicos.
AISLANTES ELÉCTRICOS
Como su nombre lo dice es perfecto para las aplicaciones eléctricas y sería aun más perfecto si fuera absolutamente no conductor, pero claro ese tipo de material no existe. Los materiales empleados como aislantes siempre conducen algo la electricidad, pero presentan una resistencia al paso de corriente eléctrica hasta 2,5 × 1024 veces mayor que la de los buenos conductores eléctricos como la plata o el cobre. Un buen aislante apenas posee electrones permitiendo así el flujo continuo y rápido de las cargas.
En los circuitos eléctricos normales suelen usarse plásticos como revestimiento aislante para los cables. Los cables muy finos, como los empleados en las bobinas (por ejemplo, en un transformador), pueden aislarse con una capa delgada de barniz. El aislamiento interno de los equipos eléctricos puede efectuarse con mica o mediante fibras de vidrio con un aglutinador plástico. En los equipos electrónicos y transformadores se emplea en ocasiones un papel especial para aplicaciones eléctricas. Las líneas de alta tensión se aíslan con vidrio, porcelana u otro material cerámico.
La elección del material aislante suele venir determinada por la aplicación. El polietileno y poliestireno se emplean en instalaciones de alta frecuencia, y el mylar se emplea en condensadores eléctricos. También hay que seleccionar los aislantes según la temperatura máxima que deban resistir. El teflón se emplea para temperaturas altas, entre 175 y 230 ºC. Las condiciones mecánicas o químicas adversas pueden exigir otros materiales. El nylon tiene una excelente resistencia a la abrasión, y el neopreno, la goma de silicona, los poliésteres de poxy y los poliuretanos pueden proteger contra los productos químicos y la humedad.
AISLANTES TÉRMICOS
Los materiales de aislamiento térmico se emplean para reducir el flujo de calor entre zonas calientes y frías. Por ejemplo, el revestimiento que se coloca frecuentemente alrededor de las tuberías de vapor o de agua caliente reduce las pérdidas de calor, y el aislamiento de las paredes de una nevera o refrigerador reduce el flujo de calor hacia el aparato y permite que se mantenga frío.
El aislamiento térmico puede cumplir una o más de estas tres funciones: reducir la conducción

CONDUCTORES

CONDUCTORES
Se llaman conductores eléctricos a los materiales que puestos en contacto con un cuerpo cargado de electricidad transmite ésta a todos los puntos de su superficie. Los mejores conductores eléctricos son los metales y sus aleaciones. Existen otros materiales, no metálicos, que también poseen la propiedad de conducir la electricidad como son el grafito, las soluciones salinas (p.e. el agua de mar) y cualquier material en estado de plasma. Para el transporte de la energía eléctrica, así como para cualquier instalación de uso doméstico o industrial, el metal empleado universalmente es el cobre en forma de cables de uno o varios hilos. Alternativamente se emplea el aluminio, metal que si bien tiene una conductividad eléctrica del orden del 60% de la del cobre es, sin embargo, un material mucho más ligero, lo que favorece su empleo en líneas de transmisión de energía eléctrica en las redes de alta tensión. Para aplicaciones especiales se utiliza como conductor el oro.
Conductores son todos aquellos materiales o elementos que permiten que los atraviese el flujo de la corriente o de cargas eléctricas en movimiento. Si establecemos la analogía con una tubería que contenga líquido, el conductor sería la tubería y el líquido el medio que permite el movimiento de las cargas. Cuando se aplica una diferencia de potencial a los extremos de un trozo de metal, se establece de inmediato un flujo de corriente, pues los electrones o cargas eléctricas de los átomos que forman las moléculas del metal, comienzan a moverse de inmediato empujados por la presión que sobre ellos ejerce la tensión o voltaje.
  • Son cuatro los principales factores que deben ser considerados en la selección de conductores: Materiales, Flexibilidad, Forma y Dimensiones.
  • Algunos elementos conductores son: Metales, Hierro, Mercurio, oro , Plata, Cobre, Platino, Plomo.

NEUTRON


NEUTRON
El Neutrón es una partícula eléctricamente neutra, de masa 1.838,4 veces mayor que la del electrón y 1,00014 veces la del protón; juntamente con los protones, los neutrones son los constitutivos fundamentales del núcleo atómico y se les considera como dos formas de una misma partícula: el nucleón.
En el interior del núcleo permanece en una configuración estable; aislado, el neutrón es inestable y después de aproximadamente diez minutos decae (es decir se transforma) en un protón y en un electrón.
La existencia de los neutrones fue descubierta en 1932 por Chadwick; estudiando la radiación emitida por el berilio bombardeado con partículas, demostró que estaba formada por partículas neutras de gran poder de penetración, las cuales tenían una masa algo superior a la del protón.
El número de neutrones en un núcleo estable es constante, pero un neutrón libre, en decir, fuera del núcleo, se desintegra con una vida media de unos 1000 segundos, dando lugar a un protón, un electrón y un neutrino.
En un núcleo estable, por el contrario, el electrón emitido no tiene la energía suficiente para vencer la atracción coulombiana del núcleo y los neutrones no se desintegran. La fuente de neutrones de mayor intensidad disponible hoy día es el reactor nuclear. El proceso fundamental que conduce a la producción de energía nuclear es la fisión de un núcleo de uranio originado por un neutrón: en la fisión el núcleo se escinde en dos partes y alrededor de tres neutrones por término medio (neutrones rápidos); los fragmentos resultantes de la escisión emiten, además otros neutrones.
Los neutrones como todas las radiaciones, producen daños directos, provocando reacciones nucleares y químicas en los materiales alcanzados. Una particularidad de los neutrones es la de producir en los materiales irradiados sustancias radioactivas de vida media muy larga. De ahí que los daños más graves producidos por las explosiones nucleares sean los provocados por neutrones en cuanto que las sustancias transformadas en radiactivas por su acción pueden ser asimiladas por organismos vivientes; pasado cierto tiempo, estas sustancias se desintegran y provocan en el organismo trastornos directos y mutaciones genéticas.

PROTON


PROTON

Partícula nuclear con carga positiva igual en magnitud a la carga negativa del electrón; junto con el neutrón, está presente en todos los núcleos atómicos. Al protón y al neutrón se les denomina también nucleones. El núcleo del átomo de hidrógeno está formado por un único protón. La masa de un protón es de 1,6726 × 10-27 kg, aproximadamente 1.836 veces la del electrón. Por tanto, la masa de un átomo está concentrada casi exclusivamente en su núcleo. El protón tiene un momento angular intrínseco, o espín, y por tanto un momento magnético. Por otra parte, el protón cumple el principio de exclusión.
El número atómico de un elemento indica el número de protones de su núcleo, y determina de qué elemento se trata. En física nuclear, el protón se emplea como proyectil en grandes aceleradores para bombardear núcleos con el fin de producir partículas fundamentales. Como ion del hidrógeno, el protón desempeña un papel importante en la química.


ELECTRON

ELECTRON
El electrón, comúnmente representado como e− es una partícula subatómica. En un átomo los electrones rodean el núcleo, compuesto de protones y neutrones. Los electrones tienen la carga eléctrica más pequeña, y su movimiento genera corriente eléctrica. Dado que los electrones de las capas más externas de un átomo definen las atracciones con otros átomos, estas partículas juegan un papel primordial en la química.
El electrón tiene una carga eléctrica negativa de −1.6 × 10−19 culombios y una masa de 9.10 × 10−31 kg (0.51 MeV/c2), que es aproximadamente 1800 veces menor que la masa del protón. El electrón tiene un spin 1/2, lo que implica que es un fermión, es decir, que se le puede aplicar la estadística de Fermi-Dirac.
Se dice que un objeto está cargado eléctricamente si sus átomos tienen un exceso de electrones (posee carga negativa) o un déficit de los mismos (posee carga positiva).
Aunque la mayoría de los electrones se encuentran formando parte de los átomos, los hay que se desplazan independientemente por la materia o juntos formando un haz de electrones en el vacío. En algunos superconductores los electrones se mueven en pareja.
Cuando los electrones que no forman parte de la estructura del átomo se desplazan y hay un flujo neto de ellos en una dirección, este flujo se llama corriente eléctrica. La electricidad estática no es un flujo de electrones. Es más correcto definirla como "carga estática", y está causada por un cuerpo cuyos átomos tienen más o menos electrones de los necesarios para equilibrar las cargas positivas de los núcleos de sus átomos. Cuando hay un exceso de electrones, se dice que el cuerpo está cargado negativamente. Cuando hay menos electrones que protones el cuerpo está cargado positivamente.
Si el número total de protones y electrones es equivalente, el cuerpo está en un estado eléctricamente neutro. Los electrones y los positrones pueden aniquilarse mutuamente produciendo un fotón. De manera inversa, un fotón de alta energía puede transformarse en un electrón y un positrón.
El electrón es una partícula elemental, lo que significa que no tiene una subestructura (al menos los experimentos no la han podido encontrar). Por ello suele representarse como un punto, es decir, sin extensión espacial.
La corriente eléctrica que suministra energía a nuestros hogares está originada por electrones en movimiento. El tubo de rayos catódicos de un televisor se basa en un haz de electrones en el vacío desviado mediante campos magnéticos que impacta en una pantalla fosforescente. Los haces de electrones se utilizan en soldaduras.
El microscopio electrónico, que utiliza haces de electrones en lugar de fotones, permite ampliar hasta 500.000 veces los objetos. Los efectos cuánticos del electrón son la base del microscopio de efecto túnel, que permite estudiar la materia a escala atómica.

ATOMO


ATOMO
Es la partícula más pequeña de un elemento que conserva las características químicas del propio elemento. Está constituido por un núcleo formado por protones (partículas positivas) y neutrones (neutros), rodeado por una o más órbitas de electrones (partículas negativas).
El centro del átomo se llama núcleo y está principalmente formado por las partículas llamadas Protones y Neutrones, los que constituyen la mayoría de la masa del átomo. Orbitando alrededor del los núcleos están pequeñas partículas llamadas electrones. Estos electrones tienen una masa muchas veces más pequeña que el Protón y el Neutrón.
En condiciones de estabilidad el número de los electrones es igual al de los protones, de manera que el átomo es electrónicamente neutro.Las características químicas de un elemento dependen del número y de la disposición de los electrones en las diversas órbitas de electrones, de modo que puede decirse que el átomo está compuesto, sustancialmente, por espacios vacíos. La masa del átomo reside casi toda en el núcleo: cada electrón es apenas 1/1.840 con respecto a la masa de un protón o de un neutrón (protones y neutrones tienen igual masa). El número de protones en el núcleo es llamado número atómico; el de los neutrones y protones conjuntamente, número de masa.
Cuando dos átomos tienen igual número de protones, y pertenecen por lo tanto al mismo elemento químico, pero un número diferente de neutrones, y por lo tanto un número diferente de masa, son llamados isótopos.

NIVELES Y SUB-NIVELES
Como se muestra en la grafica los electrones que giran alrededor del núcleo los hacen agrupados en anillos u orbitas. Estas órbitas se trataran como niveles de energía los que a su vez contienen además sub-niveles. Cada nivel y sub-nivel de energía dependiendo de la distancia el núcleo contiene un cierto número máximo de electrones que no puede excederse. El primer nivel puede tener 2 electrones, el segundo 8 (2 en el primer sub-nivel y 6 en el segundo), el tercero puede contener 18 (2,6,10), el cuarto puede contener 32 (2,6,10,14). El ultimo nivel de energía de un átomo.


MOLECULA

MOLECULA
Una molécula es una partícula formada por un conjunto de átomos ligados por enlaces covalentes o metálicos (en el caso del enlace iónico no se consideran moléculas, sino redes cristalinas), de forma que permanecen unidos el tiempo suficiente como para completar un número considerable de vibraciones moleculares. Constituye la mínima cantidad de una sustancia que mantiene todas sus propiedades químicas. Las moléculas lábiles pueden perder su consistencia en tiempos relativamente cortos, pero si el tiempo de vida medio es del orden de unas pocas vibraciones, estamos ante un estado de transición que no se puede considerar molécula. Hay moléculas de un mismo elemento, como O2, O3, N2, P4..., pero la mayoría de ellas son uniones entre diferentes elementos.
Las moléculas pueden ser neutras o tener carga eléctrica; si la tienen pueden denominarse ion-molécula o ion poliatómico. Una sustancia química formada por moléculas neutras contendrá un único tipo de tales moléculas, pero si contiene iones-molécula necesariamente ha de contener también iones monoatómicos o poliatómicos de carga contraria.
Todo lo que hay a nuestro alrededor está formado por grupos de átomos unidos que forman conjuntos llamados moléculas. Los átomos que se encuentra en una molécula se mantienen unidos debido a que comparten o intercambian electrones.
Las moléculas están hechas de átomos de uno o más elementos. Algunas moléculas están hechas de un sólo tipo de átomo. Por ejemplo, dos átomos de oxígeno se unen para formar una molécula de O2, la parte del aire que necesitamos para respirar y vivir. Otras moléculas son muy grandes y complejas. Por ejemplo, las moléculas de proteína contienen cientos de átomos.

PROPIEDADES DE LA MATERIA ORDINARIA

PROPIEDADES DE LA MATERIA ORDINARIA
Propiedades generales
Las presentan los sistemas materiales básicos sin distinción y por tal motivo no permiten diferenciar una sustancia de otra. Algunas de las propiedades generales se les da el nombre de extensivas, pues su valor depende de la cantidad de materia, tal es el caso de la masa, el peso, volumen. Otras, las que no dependen de la cantidad de materia sino de la sustancia de que se trate, se llaman intensivas. El ejemplo paradigmático de magnitud intensiva de la materia másica es la densidad.
Propiedades extensivas o generales
Son las cualidades que nos permiten reconocer a la materia, como la extensión, o la inercia. Son aditivas debido a que dependen de la cantidad de la muestra tomada. Para medirlas definimos magnitudes, como la masa, para medir la inercia, y el volumen, para medir la extensión (no es realmente una propiedad aditiva exacta de la materia en general, sino para cada sustancia en particular, porque si mezclamos por ejemplo 50 ml de agua con 50 ml de etanol obtenemos un volumen de disolución de 96 ml). Hay otras propiedades generales como la interacción, que se mide mediante la fuerza. Todo sistema material interacciona con otros en forma gravitatoria, electromagnética o nuclear. También es una propiedad general de la materia su estructura corpuscular, lo que justifica que la cantidad se mida para ciertos usos en moles.
Propiedades intensivas o específicas
Son las cualidades de la materia independientes de la cantidad que se trate, es decir no dependen de la masa no son aditivas y, por lo general, resultan de la composición de dos propiedades extensivas. El ejemplo perfecto lo proporciona la densidad, que relaciona la masa con el volumen. Es el caso también del punto de fusión, el punto de ebullición, el coeficiente de solubilidad, el índice de refracción, el módulo de Young, etc.
Propiedades químicas
Son aquellas propiedades distintivas de las sustancias que se observan cuando reaccionan, es decir, cuando se rompen o se forman enlaces químicos entre los átomos, formándose con la misma materia sustancias nuevas distintas de las originales. Las propiedades químicas se manifiestan en los procesos químicos (reacciones químicas), mientras que las propiedades propiamente llamadas propiedades físicas, se manifiestan en los procesos físicos, como el cambio de estado, la invaginación, el desplazamiento, etc.
Ejemplos de propiedades químicas:
Corrosividad de ácidos
Poder calorífico o energía calórica
Acidez
Reactividad

ESTRUCTURA DE LA MATERIA

ESTRUCTURA DE LA MATERIA

VIDEO http://www.youtube.com/watch?v=vV8Ai4ah5m4

La materia consiste de partículas extremadamente pequeñas agrupadas juntas para formar el átomo. Materia es todo aquello que tiene masa y volumen (es decir todo aquello que ocupa un lugar en el espacio). Por lo que diremos que la masa y el volumen son propiedades generales de la materia.
La materia es aquello de lo que están hechos los objetos que constituyen el Universo observable. Si bien durante un tiempo se consideraba que la materia tenía dos propiedades que juntas la caracterizan: que ocupa un lugar en el espacio y que tiene masa, en el contexto de la física moderna se entiende por materia cualquier campo, entidad o discontinuidad que se propaga a través del espacio-tiempo a una velocidad inferior a la de la velocidad de la luz y a la que se pueda asociar energía. Así todas las formas de materia tienen asociadas una cierta energía pero sólo algunas formas de materia tienen masa.
La materia másica se organiza jerárquicamente en varios niveles. El nivel más complejo es la agrupación en moléculas y éstas a su vez son agrupaciones de átomos. Los constituyentes de los átomos, que sería el siguiente nivel son:
Electrones: partículas leptónicas con carga eléctrica negativa.
Protones: partículas bariónicas con carga eléctrica positiva.
Neutrones: partículas bariónicas sin carga eléctrica (pero con momento magnético).
Por otra parte según la dinámica clásica, la masa proviene de la fuerza que se aplica a un cuerpo y la aceleración que la comunica. Materia y masa no son sinónimos, pero su cantidad aumenta y disminuye conjuntamente y se miden unidas.
Podemos encontrar la materia en distintos estados: como sustancia pura (no puede separarse en componentes simples por medios físicos) o como mezcla (sus componentes pueden separarse por medios físicos). A su vez, la sustancia pura puede ser compuesta (también llamada compuesto químico, puede separarse mediante procesos químicos) o simple (o elemento, no se puede dividir en otras sustancias mediante procesos físicos ni químicos)